Biohydrogen Production from Starch Residues
ثبت نشده
چکیده
This review summarizes the potential of starch agroindustrial residues as substrate for biohydrogen production. Types of potential starch agroindustrial residues, recent developments and bio-processing conditions for biohydrogen production will be discussed. Biohydrogen is a clean energy source with great potential to be an alternative fuel, because it releases energy explosively in heat engines or generates electricity in fuel cells producing water as only by-product. Anaerobic hydrogen fermentation or dark fermentation seems to be more favorable, since hydrogen is yielded at high rates and various organic waste enriched with carbohydrates as substrate result in low cost for hydrogen production. Abundant biomass from various industries could be source for biohydrogen production where combination of waste treatment and energy production would be an advantage. Carbohydrate-rich nitrogendeficient solid wastes such as starch residues can be used for hydrogen production by using suitable bioprocess technologies. Alternatively, converting biomass into gaseous fuels, such as biohydrogen is possibly the most efficient way to use these agroindustrial residues. Keywords—Biofuel, dark fermentation, starch residues, food waste.
منابع مشابه
Biohydrogen production from cassava starch processing wastewater by thermophilic mixed cultures
Natural microbial consortia from hot spring samples were used to developed thermophilic mixed cultures for biohydrogen production from cassava starch processing wastewater (CSPW). Significant hydrogen production potentials were obtained from three thermophilic mixedculturesnamelyPK,SWandPRwithmaximumhydrogenproductionyieldsof249.3, 180 and 124.9 mL H2/g starch, respectively from raw cassava sta...
متن کاملPrediction of Hydrogen Production Using Artificial Neural Network
Biohydrogen production from starch wastewater industry via up-flow anaerobic staged reactor (UASR) was investigated. The reactor was operated at a hydraulic retention time (HRT) of 0.28 d, and different food to micro-organisms ratios (F/M) of 0.5, 0.9, 1.4, 1.9 and 2.8 g-COD/g-VSS.d. Peak hydrogen production rate (HPR) of 246 mmol-H2/L.d was observed at F/M of 1.4 g-COD/g-VSS.d. Artificial Neur...
متن کاملBiohydrogen Production of Vinasse Derived from Bioethanol Processing Industry Wastewater: A Review
Background: Increasing global consumption of fossil fuels leads to greenhouse gas emissions, climate change and environmental pollution. Agricultural, animal and food industrial waste is one of the main sources of pollution. The bioethanol industry is one of 17 highly polluted industries. In the process of producing bioethanol, vinasse is produced, and so far 22.4 Giga litter of vinasse has bee...
متن کاملHydrothermal hydrolysis of starch with CO2 and detoxification of the hydrolysates with activated carbon for bio-hydrogen fermentation
The imminent use of hydrogen as an energy vector establishes the need for sustainable production technologies based on renewable resources. Starch is an abundant renewable resource suitable for bio-hydrogen generation. It was hypothesised that starch hydrolysates from a large (250 mL) hydrothermal reactor could support bioH2 fermentation without inhibition by toxic byproducts. Starch was hydrol...
متن کاملBiorefinery for sustainable biofuel production from energy crops; conversion of lignocellulose to bioethanol, biohydrogen and biomethane
Sustainable production and utilization of biofuels has an enormous potential for the world’s energy supply. Most research studies usually focus on individual conversion processes and specific end-products. To gain full benefits however, it is important to investigate production and utilization cycles in an integrated way and to consider all important aspects involved: e.g. crop production, resi...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2014